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Radical benzenoid structures, i.e., those which cannot have all electrons paired, are known
to possess much larger structure counts than closed-shell benzenoids of similar size. Build-
ing on our previous work, we report methods for calculating eigenvectors, eigenvalues, and
structure counts for benzenoid radicals, diradicals, and radicals of higher multiplicity. When
a series of such species is constructed by repeated addition of an aufbau unit, structure counts
can usually be expressed as a polynomial in one or two variables. Structure counts for radical
series generated by repeated circumscribing, however, cannot.

KEY WORDS: benzenoid radicals, zero eigenvalues, structure count, matching polynomial

AMS subject classification: 92E10

1. Introduction

The classical paper of Gordon and Davison on resonance topology stimulated the
research of numerous investigators [1]. Although, in the abstract of this paper, it was
stated that “In this first of two papers . . . ”, the sequel which was to deal withnon-
Kekuléan (radical) benzenoid systems was never published. The study of non-Kekuléan
benzenoid systems has become increasingly more important for our understanding of
transient reaction intermediates [2], as sources of observed interstellar diffuse spectral
bands [3], and as candidates for organic ferromagnets [4].

Hückel molecular orbital (HMO) theory has the following advantages over ab initio
quantum mechanical calculations: (1) simple – calculations are not computer-intensive;
this permits one to more easily study trends in large sets of molecules; (2) pedagogi-
cally favorable – facilitates conceptualization and understanding of chemical phenom-
ena; (3) capable of being quantitative – HMO is tantamount to a quantum-mechanics-
based topological index for QSAR studies in molecular modeling; (4) (sometimes) com-
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patible with exact solutions – analytical expression can frequently be formulated for se-
ries of related molecular systems. Moreover, the relative signs of the coefficients of the
HMO wave functions (eigenvectors) and the order of their size agree with those given by
ab initio calculations. Because of these items mentioned above, the discussion sections
of ab initio papers are invariably framed in terms of HMO jargon and descriptions.

Eigenvectors (HMO wave functions) of a molecular graph can be partially or fully
deduced from the Coulson’s pairing theorem [5], Hall subgraphs [6], McClelland sub-
graphs [7,8], Longuet–Higgens’ equation [9], Kassman’s path deletion method [10], and
Mukherjee and Datta’s vertex deletion method [11]. While reviewing some of these
methods, new results for obtaining the eigenvectors for the zero eigenvalues of ben-
zenoid monoradicals and polyradicals will be presented.

2. Results and discussion

2.1. Pairing theorem

If the two eigenvalues (X) within a single molecular graph or two related mirror-
plane fragment graphs sum to zero (Xk + XN−k+1 = 0), they are said to be paired.
The well-known pairing theorem states that all eigenvalues in a conjugated alternant
hydrocarbon (AH) are either zero (nonbonding= NBMO) or paired (bonding= BMO
and antibonding= AMO). AHs have no odd-size rings, and every other carbon vertex
can be starred so that no two starred and no two unstarred positions are adjacent. If
the number of starred and unstarred sites cannot be made equal, then the starred set is
selected to be the major set. The eigenvector coefficients for the starred positions of
the AH are unchanged in going from one (BMO) eigenvalue (Xk) to its paired (AMO)
partner (XN−k+1), and for the unstarred positions the sign (but not magnitude) changes
in going from one eigenvalue to its paired partner; if an eigenvalue has no paired partner
(i.e.,X = 0), then the coefficients of the unstarred positions are zero.

Theorem 1. An AH has eigenvalues that are eitherX0(NBMO) = 0 orXk(BMO) +
Xl(AMO) = 0.

Theorem 2. If one of the eigenvectors�(Xk) is given by

�(Xk) =
∑
i

a∗i φ
∗
i +

∑
i

a◦j φ
◦
j

whereφ∗i is thep AO of a starred atomic vertex andφ◦j that of an unstarred atomic
vertex, then the eigenvector of its twin�(Xl) is given by

�(Xl) =
∑
i

a∗i φ
∗
i −

∑
j

a◦j φ
◦
j .

Theorem 3. The eigenvector for a nondegenerate zero eigenvalue (X0 = 0) is given by

�(X0) =
∑
i

a∗i φ
∗
i .
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Via the pairing relationship, once all the bonding MOs are known, then the anti-
bonding MOs can be obtained by inspection and vice versa.

2.2. Hall subgraphs

Commonly recurring eigenvalues can be detected by embedding and mirror-
plane fragmentation; embedding and right-hand mirror-plane fragments are called Hall
and McClelland subgraphs, respectively [6–8]. Hall’s descriptive rules for embedding
smaller subgraphs onto larger graphs are as follows: (1) all vertices connected to the
subgraph fragment must be nodes (zero-eigenvector coefficients); (2) on the other side
of each of these nodes must be a repetition of the fragment with the opposite sign;
(3) other branches at these nodes will also be nodes. The eigenvectors of the eigen-
values belonging to the embedded subgraphs together are the eigenvectors of the larger
molecular graph renormalized by 1/

√
n wheren is the number of embedded subgraphs.

Embedding occurs most commonly on AHs and in some cases becomes equivalent to
mirror-plane fragmentation. A list of common embedding fragments (or MO functional
groups) and their corresponding eigenvectors can be found in several sources [11].

2.3. McClelland subgraphs and complementarity

McClelland’s rules [7,8] for mirror-plane fragmentation have been reviewed sev-
eral times. Since we are only concerned with right-hand mirror-plane fragments, one
will only need to remember the following: When an internal mirror plane of symmetry
divides a molecular graph into two parts, the vertices on the mirror plane remain with the
left-hand fragment and vertices in the right-hand fragment originally attached to these
vertices have normal weights; vertices in the right-hand fragment originally connected
by a bisected edge have weights of−1. Thus, the vertices in the right-hand fragment
are either normal or have weights of−1; the latter will be indicated on the fragment
graphs by open circles. The McClelland mirror plane defines an antisymmetric relation-
ship for the eigenvectors corresponding to the eigenvalues belonging to the right-hand
mirror-plane fragments; in this case, the vertices on the mirror plane have zero eigenvec-
tor coefficients. Mirror-plane fragmentation that does not bisect edges is equivalent to
embedding with two subgraphs. Most of the right-hand mirror-plane fragments (or MO
functional groups) having six or fewer vertices with their eigenvalues and characteristic
polynomials have been listed [7,8].

If two eigenvalues in a single molecular graph, a single right-hand mirror-plane
fragment, or two related molecular graphs or right-hand mirror-plane fragments sum
to minus one (X1 + X2 = −1), they are said to becomplementary [7]. Two equal-
sized right-hand mirror-plane fragments are complementary if all their eigenvalues are
complementary; the normal vertices of one of the complementary right-hand fragments
correspond to−1 weighted vertices in the other. Both have the same sets of normalized
eigenvector coefficients whose relative sign are fixed for the starred positions but change
for the unstarred ones in going from one to the other. Two AH molecular graphs are
complementary if their right-hand mirror-plane fragments containing normal and−1
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weighted vertices are complementary. If a molecular graph has a right-hand mirror-plane
fragment that contains an equal number of normal and−1 weighted vertices which when
interchanged gives the same fragment, then both this molecular graph and its right-hand
fragment are said to beself-complementary. For a given eigenvalue, the McClelland
mirror plane of symmetry defines an antisymmetric relationship among the coefficients
of the relevant eigenvector.

Let a given right-hand mirror-plane fragment be designated byM and its comple-
ment byM . If k is the index number of a specified starred position of normal weight
in M, thenk is also the index number for the same starred position of−1 weight inM;
starred normal weighted vertices inM become starred−1 weighted vertices inM.

Theorem 4. The associated eigenvalues (X) of two complementary right-hand mirror-
plane fragments are related byX(M)+X(M) = −1.

Theorem 5. If the eigenvector�(M) of a right-hand mirror-plane fragment is given by

�(M) =
∑
i

a∗i φ
∗
i +

∑
j

a◦j φ
◦
j for eigenvalueX(M)

whereφ∗i is thep AO of a starred atomic vertex andφ◦j that of an unstarred atomic
vertex, then the eigenvector of its complement is given by

�(M) =
∑
i

a∗i φ
∗
i −

∑
j

a◦j φ
◦
j for eigenvalueX(M).

Once half the eigenvalues/eigenvectors of an AH molecular graph have been calcu-
lated, then the pairing relationship allows one to obtain the remaining values by inspec-
tion. Similarly, from the complementary relationship, if the eigenvalues/eigenvectors of
one complementary molecular graph are known, then these quantities for the other can
be obtained without calculation.

Theorem 6. If M = M, thenM is self-complementary.

Once of the eigenvalues/eigenvectors of an such a AH molecular graph are known,
then the complementary and pairing relationships allow one to automatically obtain the
remaining quantities.

2.4. Longuet–Higgens equation and the zero sum rule

The basic equation that will be used herein was first given by Longuet–Higgens,
but its graph theoretical application has been largely overlooked. The basic algorithm
used consists of successive application of the equation (−XiCiu+Cir+Cis+Cit = 0) in
a systematic fashion to every carbon vertex of a given molecular graph [9]. Each carbon
vertexu in a conjugated polyene can be linked either to one (r), two (r ands), or three
(r, s, and t) neighboring carbon verices. If carbon vertexu is joined solely to carbon
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vertexr, thenXiCiu = Cir . If u is joined to carbon verticesr ands, XiCiu = Cir +Cis .
If u is joined to carbon verticesr, s, and t , thenXiCiu = Cir + Cis + Cit . In the
application of this algorithm, when available, one should ideally start with a degree−1
vertex and take advantage of molecular symmetry. Since each carbon atom gives rise to
one equation, this algorithm generatesNc equations inNc unkowns that can be solved, if
the eigenvalueXi is specified and the first carbon vertex is arbitrarily assignedCiu = 1.
Normalization leads to the corresponding wave function coefficients.

There are two special cases for this equation. WhenXi = 0, this equation reduces
to the well-knownzero-sum rule which can be coupled with the above algorithm to
obtain the corresponding eigenvectors (wave function) for the NBMO’s. The zero-sum
rule states that for the NBMO eigenvector, the coefficients of all the starred positions
connected to any given unstarred one must sum to zero. Also,Ciu = 0 is a condition
for embedding. The application of Hall’s descriptive rules [6] is an exploitation of the
properties of AHs and Longuet–Higgens equation [9].

2.5. Series of monoradicals and their eigenvectors

The benzo[de]acene monoradical series (figure 1) were generated by starting with
phenalenyl and repetitively attaching the C4H2 aufbau unit. The relative eigenvector co-
efficients for the zero eigenvalue of (odd carbon) AH monoradicals can be obtained by
systematic vertex deletion and determination of the number of Kekulé structures (K) of
the successor (even carbon) molecular graph. By this method the unnormalized eigen-
vector for each member of the series in figure 1 was determined. From the eigenvector
regularity present for the members shown in figure 1, one can easily determine the suc-
cessive eigenvectors subsequent members not shown. The sum of the absolute values of
these eigenvector coefficients is equal to Herndon’s corrected structure count (CSC) [12].
An analytical expression for the CSC of the benzo[de]acene series is presented (figure 1).

Figure 2 lists a monoradical series generated starting with phenalenyl by repetitive
attachment of the C6H2 aufbau unit. The unnormalized eigenvector for the zero eigen-

CSC= (1/2)(3n2 + 23n+ 10)

Figure 1. Series of benzenoid monoradicals and their eigenvectors for the eigenvalue of zero. The coeffi-
cients are theK values of the even carbon successor molecular graph obtained by vertex deletion. The sum
of the absolute values of these eigenvector coefficients gives Herndon’s corrected structure count (CSC).
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A = antisymmetric case= n = odd; CSC= (1/2)(n4+ 11n3 + 53n2 + 97n+ 54); n = 1 for phenalenyl

S = symmetric case= n = even; CSC= (1/2)(n4+ 11n3 + 53n2+ 100n + 60)

Figure 2. A series of benzeniod monoradicals and their reduced unnormalized eigenvectors for the eigen-
value ofX = 0.

value is shown for each member. Phenalenyl monoradical, the first generation member
(n = 1) is not shown, but it has an antisymmetric eigenvector of ones of alternating sign
on perimeter degree-2 vertices and a zero at the central degree-3 vertex. The eigenvector
pattern in figure 2 alternates between antisymmetric (A) and symmetric (S) where the
former has an upper edge of 1’s and a central zero and the latter has an upper edge of
2’s. The largest coefficients are invariably the lower solo carbon vertices which identify
these as the most chemically reactive sites consistent with the known derivatives. Af-
ter the eigenvectors of the initial members of such a series are generated, it is an easy
task to use the pattern to quickly arrive at the eigenvectors of later members. Analytical
expressions for the CSC are given in figure 2.

Eigenvectors for zero eigenvalues of AH monoradicals can be determined in a
straightforward manner by systematic vertex deletion and determination of the number
of Kekulé structures (K) of the successor graph. Consider successive deletion of all the
starred vertices in the maximally starred molecular graph of benzo[cd]pyrene (figure 3).
Deletion of vertices 2 or 10 gives a successor molecular graph havingK = 4, deletion of
vertices 3, 5, 7, or 9 give either the molecular graph of 1- or 4-vinylpyrene havingK = 6,
deletion of vertex 6 gives the molecular graph of benzo[c]phenanthrene havingK = 8,
and deletion of vertex 11a gives the molecular graph of 1,8-divinylanthracene having
K = 4. TheseK values give the eigenvector coefficients for the respective positions as
shown on the tenth structure in figure 3. The values for the remaining internal vertices
are obtained by application of the zero sum rule as shown of the eleventh structure in
figure 3. Division of these values by two gives the reduced unnormalized eigenvector
shown on the twelfth structure. Note that the sum of the absolute values of the unreduced
eigenvector (before division by two) gives the CSC= 48.

Using Hall’s embedding method, it can be shown that all the molecular graphs in
figure 1 can be embedded two distinct ways by ethene and are, therefore, at least dou-
bly degenerate in its eigenvalues of±1. All the molecular graphs in figure 2 can be
embedded once by ethene and have at least one eigenvalue pair of±1. McClelland’s
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Figure 3. Illustration of the step-by-step procedure for deriving the unnormalized eigenvector for the eigen-
valueX = 0 of monoradicals. (1) Maximally star the molecular graph. (2) Successively delete each starred
perimeter vertex and determine the number of Kekule’ structures (K) of the successor graph. (3) Assign
the numerical value ofK to the deleted vertex. (4) Using the zero-sum rule assign numerical values to the
internal third degree vertices. (5) If possible, reduce the numerical values to the smallest integer values, but

note that the CSC is given by the sum of the absolute values of the unreduced eigenvector.

mirror-plane fragmentation of the symmetric molecular graphs in figure 2 give right-
hand fragments that are nonradical carriers of the±1 eigenvalues. Similarly, the right-
hand mirror-plane fragments of the antisymmetric molecular graphs are monoradical
carriers of the zero and±1 eigenvalues; furthermore, the eigenvectors of these fragment
monoradicals are obtained directly from the antisymmetric eigenvectors of the precur-
sors.

2.6. Series of diradicals and their eigenvectors

Figure 4 lists the diradical series generated from triangulene by repetitive attach-
ment of the C8H2 aufbau unit. By ethene embedding, it can be shown that all the mole-
cular graphs in figure 4 have at least eigenvalues of±1. It can be seen that mirror-plane
fragmentation of the third molecular graph in figure 4 gives a right-hand fragment iden-
tical with benzo[de]anthracene, the second molecular graph in figure 1 with precisely
the same eigenvector.

Benzenoid diradicals have two zero eigenvalues and two unpaired pπ -electrons
that are only found on the starred set of carbon vertices. In order for benzenoid di-
radicals with molecular graphs of two-fold symmetry to have orthogonal eigenvectors
for degenerate (zero) eigenvalues, one eigenvector must be symmetrical and the other
must be antisymmetrical as shown for the series in figure 4. Mirror-plane fragmenta-
tion of a benzenoid diradical gives a right-hand fragment which is a monoradical that
identifies the antisymmetric eigenvalues of the diradical precursor. This property can
be exploited to easily generate the antisymmetric eigenvector as shown in figure 5 for
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Figure 4. The unnormalized antisymmetric and symmetic eigenvectors of the triangulene diradical ben-
zenoid series for the eigenvalues of X= 0.

Figure 5. Determination of the antisymmetric eigenvector for the zero eigenvalue of triangulene.

triangulene (C22H12). Once the antisymmetric eigenvector is generated, one can easily
obtain the corresponding symmetric eigenvector by using a combination of the zero-sum
rule, symmetry, and orthogonality.

Compare of the monoradical series in figure 2 with the diradical series in figure 4.
Note that, starting with the first member (triangulene) of the symmetric series, the second
molecular graph member of the antisymmetric series, the third molecular graph member
of the symmetric series, the fourth member of the antisymmetric series, and so forth, all
the diradicals in figure 4 with zero coefficients at the top of every other molecular graph
alternate between the symmetric and antisymmetric series. If one disregards the zero
coefficients of triangulene in figure 4, it is seen that the remaining coefficients exactly
match those in benzo[cd]pyrene (first molecular graph) in figure 2. A similar matching
between the molecular graphs in figure 4 topped with zero coefficients and the remaining
molecular graphs in figure 2 should be evident.

The pattern established between the eigenvectors of the benzenoid monoradical
series in figure 2 and the diradical series in figure 4 arises from the antisymmetric/
symmetric and zero-sum properties of peaks belonging to two-fold symmetrical ben-
zenoid diradicals. In general, two-fold symmetrical benzenoid diradicals having a tri-
angular or trapezoidal shape with an odd number of continuously connected peaks will
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Figure 6. Unstarred peak deletion converts a monoradical into a diradical in which one of the zero eigen-
values has the original (unnormalized) eigenvector.

have a cap of zero coefficients for their symmetrical eigenvectors or with an even number
of continuously connected peaks will have a cap of zero coefficients for their antisym-
metrical eigenvectors corresponding to one of two of the zero eigenvalues. One of the
eigenvectors to some molecular graphs of benzenoid diradicals related to the structures
in figure 2 can be obtained directly from them by judicious deletion of unstarred peaks
as illustrated in figure 6. Such deleted of unstarred peaks are models for point defects in
quasi-graphite strips [4]; figure 6 suggests that these point defects should both increase
the number of charge carriers (radical multiplicity) and the width of the conduction band
which SC is a measure.

2.7. Corrected structure count (CSC)

Resonance predictions of the relative stability of isomeric species are invariably
based on the number of valence-bond structures can be drawn for them. Structure count
(SC) is the total number of valence-bond structures that can be written for any given con-
jugated pπ -system whether it is an ionic, radical, or molecular species. Kekulé structure
count (in mathematical jargon, number of unique 1-factor subgraphs) is the term used
for alternant hydrocarbons. Corrected structure count (CSC) was defined by Herndon
as the structure count exclusive of (anti-aromatic) structures which do not contribute to
stabilizing resonance interactions [12]. The determination of SC and CSC can be il-
lustrated by the biphenylene and phenalenyl examples in figure 7. The square-root of
the tail coefficient of the characteristic polynomial of even-carbon alternant hydrocar-
bons (EAH) gives the CSC which equals the SC if the alternant hydrocarbon contains
no anti-aromatic 4n rings. The square-root of the tail coefficient to the characteristic
polynomial of biphenylene gives CSC= 3; of course, the square-root of the sum of
the squares of all the eigenvalues (roots) of this characteristic polynomial also gives
CSC= 3. Using Herndon’s vertex deletion method [12] on biphenylene gives an odd
alternant hydrocarbon (OAH) on which the application of the zero-sum rule, one ob-
tains the unnormalized eigenvector coefficients for the NBMO of the OAH as shown in
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Figure 7. SC for any molecular graph is determined from the value of the tail coefficient to its matching
polynomial. CSC is obtained by excluding the antiaromatic contributions to SC.

figure 7. The sum of the absolute values of the coefficients to the vertices which were at-
tached to the deleted vertex gives the SC of the biphenylene precursor and the algebraic
sum gives the CSC.

The tail coefficient of the matching polynomial of any molecular graph always
gives the SC directly. The CSC of monoradical OAHs with antiaromatic rings requires
a different approach from Herndon’s method [12] as illustrated with phenalenyl in fig-
ure 7. The tail coefficient to the characteristic polynomial of phenalenyl monoradical
gives no information on CSC. Using the vertex deletion/zero-sum procedure outlined
in figure 3, the unreduced eigenvector coefficients shown in figure 7 were obtained.
The sum of the absolute values of these coefficients gives CSC= 18 for phenalenyl.
In the set of all phenalenyl resonance structures, a double bond must be either at
edgea or edgeb. Deletion of either edge along with the pendent vertices gives the
α-methylenylnaphthalene structure with a SC= 10 as shown. Thus, the phenalenyl pre-
decessor has a SC= 2 · 10= 20 in agreement with the tail coefficient of the matching
polynomial. The reduction of SC by two to give CSC arises in phenalenyl because the
former counts the anti-aromatic perimeter where the unpaired electron is localized on
the central internal vertex, whereas the eigenvector coefficient of zero at this point tells
us that the unpaired electron is never localized at the position.
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There are two methods to obtain the CSC for monoradicals. The first method is
illustrated in figure 3 uses a vertex deletion/zero-sum rule procedure to compute the un-
normalized eigenvector for the corresponding zero eigenvalue. The second method uses
the tail coefficient of the matching polynomial amended by antiaromatic contributions
determined by select Sachs’ graphs as we now discuss. Let the tail coefficient to the
characteristic polynomial of an odd carbon (N = Nc) monoradical beaN−1, then

aN−1 = aN−1(acyclic)+ aN−1(cyclic)

where|aN−1(acyclic)| = SC is the tail coefficient of the matching polynomial. It follows
that

aN−1(cyclic) = aN−1(aromatic)+ aN−1(antiaromatic)

and

aN−1(antiaromatic) = aN−1(C4n, n = 3)+ aN−1(C4n, n > 3)

where aN−1(C4n, n = 3) includesC12 circuit components; note thataN−1 [and
aN−1(acyclic)] andaN−1(antiaromatic) will always have opposite signs and thatC12 is
the smallest antiaromatic circuit that can be found in a benzenoid radical system. Thus

CSC= ∣∣aN−1(acyclic)+ aN−1(C4n, n = 3)
∣∣.

Overall, Herndon’s CSC only subtracts out destabilizing resonance contributions due to
the smallest, more important antiaromatic circuit components.

2.8. Higher radicals

While the SC of low symmetry diradicals and higher multiplicity radicals can be
determined from the tail coefficients of their corresponding matching polynomials or by
decomposition methods, general methods for determining their CSC and eigenvectors
remain unresolved. Even the meaning of CSC in regard to benzenoid polyradicals re-
mains, at best, vague. Table 1 lists SC values for a number of benzenoid polyradicals.
These results were obtained using Mathematica® to find the matching polynomial. The
program was adapted from one published by Salvador et al. [13]. Because of the large
size of some of the structures in table 1, it was necessary to break the structure into two
fragments of approximately equal size and calculate the matching polynomial for the
whole according to the equation of Babić et al. [14].

2.9. Constant-isomer radical series

The row series in table 1 are all one-isomer series. The first row is theD6h

polycircum series generated by repetitive circumscribing starting with benzene. The
second row is theD3h polycircumphenalenyl monoradical series, and the third row is
the polycircumtriangulene diradical series. Circumscribing methyl radical (CH3) with
a perimeter of 2NH + 6 carbons (NH = 3 for methyl) and 6 more hydrogens gives
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Figure 8. Eigenvector for the zero eigenvalue of circumphenalenyl monoradical.

Figure 9. Antisymmetric and symmetric eigenvectors for the zero eigenvalues of circumtriangulene.

phenalenyl monoradical (C13H9); methyl radical is the excised internal structure of
phenylenyl. Repetitive circumscribing starting with phenalenyl (first generation mem-
ber) gives successive members of theD3h one-isomer monoradical series with NBMO
eigenvectors that alternate between anti-symmetric and symmetric (confer with figure 8
for the second generation member). While there are three C22H12 benzenoid isomers,
triangulene (figure 5) is the only diradical isomer. Circumscribing triangulene diradi-
cal with 2NH + 6 = 2 · 12+ 6 = 30 carbons and 6 more hydrogens gives circum-
triangulene (C52H18, figure 9), the second generation member of theD3h one-isomer
diradical series; the SC values given in this row of table 1 are only for these dirad-
icals. In the fourth row, C33H15 is the formula of 17 monoradicals and one triradi-
cal, where the latter is the excised internal of the first generation member (C69H21) to
theD3h triradical series. The SC values given in the fourth row of table 1 are only
for the single triradical of each formula. In the fifth row, C46H18 is the formula for
187 benzenoid isomers, 22 which are diradicals and one which is a tetraradical; the
SC values given in this row are only for the sole tetraradical and the first generation
member of theD3h one-isomer tetraradical series has the formula of C142H30. All the
formulas in the first column correspond to the triangular benzenoid hydrocarbons (fig-
ure 10).
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Figure 10. Smallest most condensed benzenoid polyradical series.

2.10. Analytical expressions

It has been demonstrated that whenever a series is generated by repetitive attach-
ment of a given aufbau unit as in figures 1 and 3, then their SC analytical expressions
will have a polynomial form as shown [15,16]. Since theD6h one-isomer circumben-
zene series (the first row in table 1) has a factorial form for itsK = SC, we conjectured
that other (radical) series generated by successive attachment of units that are being pro-
gressively incremented (growing) or by successive circumscribing as in the construction
of constant-isomer series might also have a similar factorial form for their SC analyt-
ical expressions. The second type of analytical expression was published by Gordon
and Davison [1] with permission by the originator, M. Woodger, who was supposed to
subsequently publish his derivation but never did. Gordon and Davidson expressed this
value as

K =
2n−1∏
i=n

(
n+ i
n

)
÷
n−1∏
i=1

(
n+ i
n

)
,

where the products are over the appropriate binomial coefficients. The on-line encyclo-
pedia of integer sequences [17] identified the sequence as the number of ways to tile a
hexagon of edgen with diamonds of edge 1, and also the number of plane partitions
whose Young diagrams fit inside ann × n × n box. This source expressed the formula
as

K =
n∏
i=1

n∏
j=1

n∏
k=1

i + j + k − 1

i + j + k − 2
=

n∏
i=1

!(i)!(2n + i)
[!(n+ i)]2 =

n−1∏
i=0

i!(2n + i)!
(n+ i)!2 .

Our efforts to find similar factorial SC analytical expressions failed. Superseeker [18],
which performs many mathematical searches, as well as searching the on-line encyclo-
pedia of integer sequences, found no analytical formula for any row or column from
table 1. The fact that the circumbenzene series have SC values with reasonably small
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Figure 11. Decomposition of a D3h triangular- or trapezoidal-shaped benzenoid molecular graph by op-
erating on a central unstarred peak per SC(G) = ∑

SC(G–(e)) proves that all such graphs with an odd
number of peaks must have an even SC value.

prime factors (e.g., 267 227 532= 22 × 33 × 113 × 132) whereas the row and col-
umn radical series exhibit very large prime factors (e.g., 273 956= 22 × 68 489 and
189 792= 25 × 32 × 659) suggests that if SC analytical expressions for these series do
exist that they will have a very different form from the polynomial and factorial types.

Even though no SC analytical expressions have been found for the mono- and
polyradical benzenoidD3h one-isomer series having formulas given in table 1, some
general observations can be summarized. Comparing SC values for similar carbon num-
bers (e.g., the C97H27 heptaradical versus C94H24 diradical or the C141H33 nonaradical
versus the C142H30 tetraradical) show that the number of resonance structures rapidly
increases as the radical multiplicity increases. By way of symmetry, if one decomposes
any benzenoid molecular graph having a formula in the first, third, fifth, etc. columns
of table 1 by the method illustrated in figure 11, it is proved that their SC values must
be even numbered. By Hall’s embedding method, it can be shown that all theD3h ben-
zenoid radicals in table 1 are at least triply degenerate in the eigenvalues of±1.

3. Conclusions

While reviewing descriptive HMO techniques for studying structural properties of
radical systems, new eigenvector patterns and SC data for benzenoid series generated
by repetitive attachment of a given aufbau unit and by successive circumscribing have
been determined. The smallest most condensed benzenoid polyradicals (figure 10) have
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considerable theoretical importance and their number of resonance structures have been
determined and summarized in the first column of table 1. Herndon’s CSC has been
further analyzed. Since the unpaired electrons in alternant radicals are only found on the
starred carbon sites, the starred vertex deletion procedure for obtaining unnormalized
eigenvectors for the purpose of determining the CSC of the zero eigenvalue of mono-
radicals (confer with figure 3) represents a slight improvement over Herndon’s original
procedure [12].

4. Disclaimer

This document has been reviewed by the Office of Pollution Prevention and Tox-
ics, USEPA, and approved for publication. Approval does not signify that the contents
necessarily reflect the views and policies of the Agency, nor does the mention of trade
names or commercial products constitute endorsement or recommendation for use.
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